Effects of sublethal temperature and salinity stress on swimming behavior, early development, and survival of Macrobrachium inca larvae
Main Article Content
Abstract
The objective was to evaluate the effects of sublethal temperature and salinity stress on the swimming behavior, early development, and survival of Macrobrachium inca larvae. Ovigerous females were captured from the Lacramarca River (Ancash, Peru) and maintained in the laboratory until embryo hatching. Newly hatched larvae from five females were transferred to temperatures ranging from 20°C (control) to 24, 26, 28, and 30°C; and to salinities ranging from 0‰ (control) to 20, 25, 30, 35, and 40‰, in both cases for 60 min, at a density of 50 larvae/L. Larvae exposed to sublethal thermal stress at 20°C and 24°C, and to sublethal salinity stress at 20‰, 25‰, and 30‰, showed a high swimming rate (>90%), but swimming behavior was affected as environmental stress increased. Larvae that tolerated short-term sublethal thermal and salinity stress were cultured in brackish water (20‰) and fed with Artemia franciscana nauplii. Short-term sublethal thermal stress did not have a differential effect on larval survival and development, with the ZVI stage reached after exposure to 24°C and 30°C stress, and the ZV stage at 26°C and 28°C. In contrast, short-term sublethal salinity stress affected larval survival and development, with the ZIV stage developing faster when exposed to 30‰ and 35‰ salinity, and the ZVI stage at 30‰. Short-term sublethal thermal and salinity stress affects larval development, but it is advisable to investigate other environmental and nutritional factors to improve survival.
Article Details
References
Anger, K. (2013). Neotropical Macrobrachium (Caridea: Palaemonidae): On the biology, origin, and radiation of freshwater-invading shrimp. Journal of Crustacean Biology, 33, 151–183. https://doi.org/10.1163/1937240X-00002124
Burraco, P., Orizaola, G., Monaghan, P., & Metcalfe, N. B. (2020). Climate change and ageing in ectotherms. Global Change Biology, 26(10), 5371–5381. https://doi.org/10.1111/gcb.15305
Canaza-Choque, F. (2019). De la educación ambiental al desarrollo sostenible: desafíos y tensiones en los tiempos del cambio climático. Revista de Ciencias Sociales, 165, 155–172. https://doi.org/10.15517/rcs.v0i165.40070
Cerdán, M., & Sanchez, L. (2014). Crecimiento de Macrobrachium inca “camarón de río” en cuatro densidades de siembra en policultivo con Dormitator latifrons “Pocoche” y Oreochromis niloticus x Oreochromis aureus “tilapia híbrida” en estanques seminaturales. Tesis para título. Universidad Nacional Pedro Ruiz Gallo. Lambayeque, Perú. URL: https://hdl.handle.net/20.500.12893/805
Chávez-López, R. (2023). Revisando los tipos de estuarios de la costa de Veracruz. Biología, Ciencia y Tecnología, 16, 1130-1135. https://doi.org/10.22201/fesi.20072082e.2023.16.84783
Coelho-Filho, P., Gonçalvez, A., & Barros, H. (2018). Artemia nauplii intake by Macrobrachium carcinus at different larval stages in laboratory. Aquaculture, 484, 333–337. https://doi.org/10.1016/j.aquaculture.2017.07.035
Dávila, E., Medina, J., & Reyes, W. (2013). Crecimiento y supervivencia de postlarvas de Macrobrachium inca (Holthuis, 1950) (Crustacea, Palaemonidae) alimentadas con ensilado biológico. Intropica, 8(1), 79–86. URL: https://revistas.unimagdalena.edu.co/index.php/intropica/article/view/742
Freitas, E., Hayd, L., & Calado, R. (2021). Effects of salinity, stocking density and feeding in Macrobrachium pantanalense larviculture. Aquaculture Reports, 20, 100706. https://doi.org/10.1016/j.aqrep.2021.100706
García, V., Orozco, R., & Perea, M. (2019). Calidad del ambiente marino y costero en la región Ancash, 2018. Boletín del Instituto del Mar del Perú, 34(2), 406–431. URL: https://revistas.imarpe.gob.pe/index.php/boletin/article/view/273/263
Ghory, F. S., Kazmi, Q. B., & Kazmi, M. A. (2022). Description of the first to fourth zoeal stages of Macrobrachium equidens (Dana, 1852) (Crustacea: Decapoda: Palaemonidae). Pakistan Journal of Marine Sciences, 31(1), 13–27. URL: https://www.pakjmsuok.com/index.php/pjms/article/view/110
Guerra, A., Gómez, A., Velásquez, E., & Reyes, W. (1987). Desarrollo embrionario y larvario de camarones de río de la costa peruana. Revista Biomédicas, 4, 46-58.
Huong, D. T. T., Jayasankar, V., Jasmani, S., Saido-Sakanaka, H., Wigginton, A.J., & Wilder, M. N. (2004). Na/K-ATPase activity during larval development in the giant freshwater prawn Macrobrachium rosenbergii and the effects of salinity on survival rates. Fisheries Science, 70, 518–520. https://doi.org/10.1111/j.1444-2906.2004.00833.x
Jalihal, D. R., Sankolli, K. N., & Shakuntala, S. (1993). Evolution of larval developmental patterns and the process of freshwaterization in the prawn genus Macrobrachium Bate, 1868 (Decapoda, Palaemonidae). Crustaceana, 65(3), 365–376. https://doi.org/https://doi.org/10.1163/156854093X00793
Ju-ngam, T., Mcmillan, N., Yoshimizu, M., Kasai, H., & Wongpanya, R. (2021). Functional and stress response analysis of heat shock proteins 40 and 90 of giant river prawn (Macrobrachium rosenbergii) under temperature and pathogenic bacterial exposure stimuli. Biomolecules, 11(1034), 1–27. https://doi.org/https://doi.org/10.3390/biom11071034
Lal, M., Seeto, J., Pickering, T., & Hodge, S. (2012). Salinity and temperature requirements for larviculture of the Monkey River prawn Macrobrachium lar (Fabricius, 1798) (Decapoda: Caridea: Palaemonidae). Aquaculture, 366–367, 1–8. https://doi.org/10.1016/j.aquaculture.2012.08.042
Lemos, D., & Weissman, D. (2021). Moulting in the grow-out of farmed shrimp: a review. Reviews in Aquaculture, 13(1), 5–17. https://doi.org/10.1111/raq.12461
Lima, J., Melo, F., Ferreira, M., Flickinger, D., Andrade, H., & Correia, E. (2021). Lethal salinity and survival for Macrobrachium carcinus larvae subjected to osmotic stress. Estuarine, Coastal and Shelf Science, 262, 1–8. https://doi.org/10.1016/j.ecss.2021.107602
Luque, C. (2008). Estudio de la diversidad hidrobiológica en Tumbes. Informe Anual 2007. Instituto del Mar del Perú. Sede Regional de Tumbes, Perú. 1–36 p.
Manzi, J. J., Maddox, M. B., & Sandifer, P. A. (1977). Algal supplement enhancement of Macrobrachium rosenbergii (de Man) larviculture. Proceedings of the Annual Meeting‐World Mariculture Society, 8(1–4), 207–223. https://doi.org/10.1111/j.1749-7345.1977.tb00119.x
Mazzarelli, C. C. M., Santos, M. R., Amorim, R. V. & Augusto, A. (2015). Effect of salinity on the metabolism and osmoregulation of selected ontogenetic stages of an amazon population of Macrobrachium amazonicum shrimp (Decapoda, Palaemonidae). Brazilian Journal of Biology, 75(2), 372-379. http://dx.doi.org/10.1590/1519-6984.14413
Méndez, M. (1981). Claves de identificación y distribución de los langostinos y camarones (Crustacea: Decapoda) del mar y ríos de la costa del Perú. Boletín Instituto del Mar del Perú, 5, 1–170. https://revistas.imarpe.gob.pe/index.php/boletin/article/view/234/225
Mengal, K., Kor, G., Kozák, P., & Niksirat, H. (2023). Heat shock proteins adaptive responses to environmental stressors and implications in health management of decapods. Aquaculture Reports, 30, 101564. https://doi.org/10.1016/j.aqrep.2023.101564
Meruane, J. A., Morales, M. C., Galleguillos, C. A., Rivera, M. A., & Hosokawa, H. (2006). Experiencias y resultados de investigaciones sobre el camarón de río del norte Cryphiops caementarius (Molina 1782) (Decapoda: Palaemonidae): Historia natural y cultivo. 70(2), 280–292. https://doi.org/https://doi.org/10.4067/S0717-65382006000200015
Morales, M. C., & Meruane, J. (2012). Larval condition indicators applied to the northern river shrimp Cryphiops caementarius (Molina, 1782), under condition of controlled cultivation. Latin American Journal of Aquatic Research, 40(3), 730–742. https://doi.org/10.3856/vol40-issue3-fulltext-20
Morales, M. C., Rivera, M., Meruane, J., Galleguillos, C., & Hosokawa, H. (2006). Morphological characterization of larval stages and first juvenile of the freshwater prawn Cryphiops caementarius (Molina, 1782) (Decapoda: Palaemonidae) under laboratory conditions. Aquaculture, 261(3), 908–931. https://doi.org/10.1016/j.aquaculture.2006.07.042
Moreno-Reyes, J., Morales, M., Méndez, C., Álvarez, C., & Meruane, J. (2019). Optimization of techniques and procedures for the production and management of live feed used in the larval culture of the freshwater shrimp Cryphiops caementarius (Decapoda: Palaemonidae). Latin American Journal of Aquatic Research, 47(5), 791–797. https://doi.org/10.3856/vol47-issue5-fulltext-8
Rahi, L., Azad, K., Tabassum, M., Irin, H., Hossain, K., Aziz, D., Moshtaghi, A., & Hurwood, D. (2021). Effects of salinity on physiological, biochemical and gene expression parameters of black tiger shrimp (Penaeus monodon): Potential for farming in low-salinity environments. Biology, 10(12). https://doi.org/10.3390/biology10121220
Rahman, M., Wille, M., Cavalli, R., Sorgeloos, P., & Clegg, J. (2004). Induced thermotolerance and stress resistance in larvae of the freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquaculture, 230(1–4), 569–579. https://doi.org/10.1016/j.aquaculture.2003.10.010
Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P., & Li, J. (2021). Effects of low temperature on shrimp and crab physiology, behavior, and growth: A review. Frontiers in Marine Science, 8, 746177. https://doi.org/10.3389/fmars.2021.746177
Reyes, W., Luján, H., & Moreno, L. (2014). Efecto del shock térmico en la vitalidad de larvas de Cryphiops caementarius. The Biologist, 12(2), 223–235. URL. https://revistas.unfv.edu.pe/rtb/article/view/350
Reyes, W., Luján, H., Moreno, L., & Pesantes, M. (2009). Caracterización de estadios embrionarios de Cryphiops caementarius (Crustacea, Palaemonidae). Sciéndo, 12(1), 55–67.
Sandoval, I., & Marcial, R. (2022). Larvas de invertebrados en el estuario del río Chira, Vichayal, Perú. Manglar, 19(4), 349–356. https://doi.org/10.57188/manglar.2022.044
Sokolova, I. (2023). Ectotherm mitochondrial economy and responses to global warming. Acta Physiologica, 237, e13950. https://doi.org/10.1111/apha.13950
Srisapoome, P., Ju-ngam, T., & Wongpanya, R. (2021). Characterization, stress response and functional analyses of giant river prawn (Macrobrachium rosenbergii) glucose-regulated protein 78 (Mr-grp78) under temperature stress and during Aeromonas hydrophila Infection. Animals, 78(11), 3004. https://doi.org/https://doi.org/10.3390/ani11103004
Subramanian, P., Samasivam, S., & Krishnamurthy, K. (1980). Experimental study on the salinity tolerance of Macrobrachium idae larvae. Marine Ecology Progress Series, 3, 71–73. https://doi.org/10.3354/meps003071
Valenzuela, S. S. (2014). Ictiofauna y estado de conservación de la cuenca del río Tumbes. Tesis para Título. Universidad Nacional Mayor de San Marcos, Perú. URL: https://core.ac.uk/download/pdf/323348358.pdf
Vargas-Ceballos, M., Vega-Villasante, F., García-Guerrero, M., Chong-Carrillo, O., Badillo-Zapata, D., López-Uriarte, E., & Wehrtmann, I. (2018). Salinity effect on embryonic development and survival of the first zoeal stage of Macrobrachium tenellum (Smith, 1871) (Crustacea, Palaemonidae). Pan-American Journal of Aquatic Sciences, 13(4), 273–281. URL: https://www.kerwa.ucr.ac.cr/server/api/core/bitstreams/96e93077-c5f0-4b4a-9b32-6e1ffb061652/content
Velásquez, C., Álvaro, W., Denisse, T., Yeriko, A., & Francisco, C. (2022). Propuesta de plan de manejo integrado para el camarón de río del norte (Cryphiops caementarius) en la cuenca del río Choapa. Instituto de Fomento Pesquero. 108 p. URL: https://www.ifop.cl/wp-content/contenidos/uploads/minisitios/camaron_choapa/reporte/Propuesta_PMI_Camaro%CC%81n__rio%20Choapa__enero_2022.pdf
Zeng, C., Rotllant, G., Giménez, L., & Romano, N. (2020). Effects of environmental conditions on larval growth and development, in: Anger, K., Harzsch, S., Thiel, M. (Eds.), Developmental biology and larval ecology. Oxford University Press, pp. 195–223. https://doi.org/10.1093/oso/9780190648954.003.0007




