Phosphorus removal rate from seawater through the culture of Tetraselmis suecica
Main Article Content
Abstract
The disposal of phosphorus in the oceans is one of the main causes of pollution of marine ecosystems, with severe impacts on aquatic life and therefore it is urgent to develop mitigation measures. In this study, the use of Tetraselmis suecica to remove phosphorus (P) from seawater was evaluated under laboratory conditions. Experimental treatments of 23.03, 44.80, 79.50 and 94.20 mg L-1 of (NH4)2 HPO4 and a control with Heussler-Merino medium (HM) were used. The culture units consisted of photobioreactors with a culture volume of 2000 mL, preserved with aeration and constant lighting. During cultivation, the experimental units maintained similar growths, however, the controls presented higher growth rates. At the end of the values of 77.83 % in controls and 36.20 % in those dosed with 94.2 mg L-1 of P. These results demonstrate the excellent possibilities of using cultures massive of T. suecica to remove excess P from the marine aquatic environment.
Article Details
References
Aguirre-Velarde, A., Thouzeau, G., Jean, F., Mendo, J., Cueto-Vega, R., Kawazo-Delgado, M., Vásquez-Spencer, J., Herrera-Sanchez, D., Vega-Espinoza, A., & FlyeSainte-Marie, J. (2019). Chronic and severe hypoxic conditions in Paracas Bay, Pisco, Peru: Consequences on scallop growth, reproduction, and survival. Aquaculture, 512, 734259. https://doi.org/10.1016/j.aquaculture.2019.734259.
Andrade, C. E., Vera, A. L., Cárdenas, C. H., & Morales, E. D. (2009). Producción de biomasa de la microalga Scenedesmus sp. utilizando aguas residuales de pescadería. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 32(2), 126-134. Disponible en: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S025407702009000200005.
Borowitzka, M. A. (2018). Chapter 3-Biology of Microalgae. En I. A. Levine & J. Fleurence (Eds.), Microalgae in Health and Disease Prevention (pp. 23-72). Academic Press. https://doi.org/10.1016/B978-0-12811405-6.00003-7.
Doering, P., Oviatt, C., Nowicki, B., Klos, E., & Reed, L. (1995). Phosphorus and nitrogen limitation of primary production in a simulated estuarine gradient. Marine Ecology Progress Series, 124, 271-287. https://doi.org/10.3354/meps124271.
Fabris, M., Abbriano, R. M., Pernice, M., Sutherland, D. L., Commault, A. S., Hall, C. C., Labeeuw, L., McCauley, J. I., Kuzhiuparambil, U., Ray, P., Kahlke, T., & Ralph, P. J. (2020). Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00279.
Guerra-Renteria, A. S., García-Ramírez, M. A., Gómez-Hermosillo, C., Gómez-Guzmán, A., González-García, Y., & González-Reynoso, O. (2019). Metabolic Pathway Analysis of Nitrogen and Phosphorus Uptake by the Consortium between C. vulgaris and P. aeruginosa. International Journal of Molecular Sciences, 20(8), 1978. https://doi.org/10.3390/ijms20081978.
Guillard, R. (1973). Division Rates. In: J. R. Stein (ed). Handbook of phicological methods and grow measurement. Cambridge University Press. London. 290-311 pp.
Hernández, I., Niell, F. X., & Whitton, B. A. (2002). Phosphatase activity of benthic marine algae. An overview. Journal of Applied Phycology, 14(6), 475-487. https://doi.org/10.1023/A:1022370526665.
Kim, I., Yang, H.-M., Park, C. W., Yoon, I.-H., Seo, B.-K., Kim, E.-K., & Ryu, B.-G. (2019). Removal of radioactive cesium from an aqueous solution via bioaccumulation by microalgae and magnetic separation. Scientific Reports, 9(1), 10149. https://doi.org/10.1038/s41598-019-46586-x.
Laws, E. A., Pei, S., Bienfang, P., & Grant, S. (2011). Phosphate-limited growth and uptake kinetics of the marine prasinophyte Tetraselmis suecica (Kylin) Butcher. Aquaculture, 322-323, 117-121. https://doi.org/10.1016/j.aquaculture.2011.09.041.
Lei, Y.-J., Tian, Y., Zhang, J., Sun, L., Kong, X.W., Zuo, W., & Kong, L.-C. (2018). Microalgae cultivation and nutrients removal from sewage sludge after ozonizing in algalbacteria system. Ecotoxicology and Environmental Safety, 165, 107-114. https://doi.org/10.1016/j.ecoenv.2018.08.096.
López-Rodas, V., Marvá, F., Costas, E., & Flores-Moya, A. (2008). Microalgal adaptation to a stressful environment (acidic, metal-rich mine waters) could be due to selection of pre-selective mutants originating in non-extreme environments. Environmental and Experimental Botany, 64(1), 43-48. https://doi.org/10.1016/j.envexpbot.2008.01.001.
Merino, J. F. (2000). Informe de Año Sabático. Universidad Nacional del Santa.
Monteiro, C. M., Castro, P. M. L., & Malcata, F. X. (2012). Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnology Progress, 28(2), 299-311. https://doi.org/10.1002/btpr.1504.
Novák, Z., Harangi, S., Baranyai, E., Gonda, S., B-Béres, V., & Bácsi, I. (2020). Effects of metal quantity and quality to the removal of zinc and copper by two common green microalgae (Chlorophyceae) species. Phycological Research, 68(3), 227-235. https://doi.org/10.1111/pre.12422.
Pacheco, D., Rocha, A. C., Pereira, L., & Verdelhos, T. (2020). Microalgae Water Bioremediation: Trends and Hot Topics. Applied Sciences, 10(5), 1886. https://doi.org/10.3390/app10051886.
Páez-Osuna, F. (2005). Retos y perspectivas de la camaronicultura en la zona costera. Revista Latinoamericana de Recursos Naturales, 1, 21-31.
Pandey, A., Singh, M. P., Kumar, S., & Srivastava, S. (2019). Phycoremediation of Persistent Organic Pollutants from Wastewater: Retrospect and Prospects. En S. K. Gupta & F. Bux (Eds.), Application of Microalgae in Wastewater Treatment (pp. 207-235). Springer International Publishing. https://doi.org/10.1007/978-3-030-139131_11.
Pavasant, P., Ritcharoen, W., Sriouam, P., Nakseedee, P., Sang, P., Powtongsook, S., & Kungvansaichol, K. (2014). Cultivation options for indoor and outdoor growth of Chaetoceros gracilis with airlift photobioreactors. Maejo International Journal of Science and Technology, 8(01), 100-113. https://doi.org/10.14456/mijst.2014.9.
Perales-Vela, H. V., Peña-Castro, J. M., & Cañizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64(1), 1-10. https://doi.org/10.1016/j.chemosphere.2005.11.024.
Sarker, N. K., & Salam, P. A. (2019). Indoor and outdoor cultivation of Chlorella vulgaris and its application in wastewater treatment in a tropical city—Bangkok, Thailand. SN Applied Sciences, 1(12), 1645. https://doi.org/10.1007/s42452-019-1704-9.
Solovchenko, A. E., Ismagulova, T. T., Lukyanov, A. A., Vasilieva, S. G., Konyukhov, I. V., Pogosyan, S. I., Lobakova, E. S., & Gorelova, O. A. (2019). Luxury phosphorus uptake in microalgae. Journal of Applied Phycology, 31(5), 2755-2770. https://doi.org/10.1007/s10811-019-01831-8.
Tien, C.-J. (2002). Biosorption of metal ions by freshwater algae with different surface characteristics. Process Biochemistry, 38(4), 605-613. https://doi.org/10.1016/S0032-9592(02)00183-8.
Tirok, K., & Scharler, U. M. (2014). Influence of variable water depth and turbidity on microalgae production in a shallow estuarine lake system - A modelling study. Estuarine, Coastal and Shelf Science, 146, 111-127. https://doi.org/10.1016/j.ecss.2014.05.011.
Ummalyma, S. B., Pandey, A., Sukumaran, R. K., & Sahoo, D. (2018). Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams. En S. J. Varjani, B. Parameswaran, S. Kumar, & S. K. Khare (Eds.), Biosynthetic Technology and Environmental Challenges (pp. 355375). Springer Singapore. https://doi.org/10.1007/978-981-10-7434-9_19.
Wollmann, F., Dietze, S., Ackermann, J.-U., Bley, T., Walther, T., Steingroewer, J., & Krujatz, F. (2019). Microalgae wastewater treatment: Biological and technological approaches. Engineering in Life Sciences, 19(12), 860-871. https://doi.org/10.1002/elsc.201900071.