Solution stability of a Timoshenko system with memory

Main Article Content

Víctor Hilario Tarazona Miranda

Abstract

This article studies the asymptotic behavior of dissipative systems with applications to beam modeling. Specifically, the existence, uniqueness and asymptotic behavior of a Timoshenko system with memory and with a Dirichlet type boundary condition are studied. The theory of semigroups is used to demonstrate the result of existence and uniqueness of solution and Gearhart theorem for the exponential stability of a Timoshenko system with total memory.

Article Details

Section
Artículos

References

Greatti, S. (2018). Existéncia de solução e estabilidade exponencial dos sistemas de Timoshenko viscoelástico e termoelástico. [Tesis de Maestria]. Universidade Estadual de Londrina. Disponible en: http://www.uel.br/pos/pgmac/Dissertacoes/2018%20Suellen%20Aparecida%20Greatti%20Vieira.pdf.

Liu, Z. & Zheng, S. (1999). Semigroups associated with dissipative systems. Chapman and Hall.

Ma, Z., Zhang, L., & Yang, X. (2011). Exponential stability for a Timoshenko type system with history. Journal of Mathematical Analitical Applied, 4(380), 295-309. DOI: 10.1016/j.jmaa.2011.02.078.

Raposo, C., Ferreira, J., Lima, M. & Castro, N. (2005). Exponential stability for the Timoshenko system with two weak dampings. Applied Mathematics Letters. 18(5), 530-536. DOI 10.1016/j.aml.2004.03.017.

Said-Hoauri, B. & Rahali, R. (2011). A stability result for a Timoshenko system with past history and a delay term in the internal feedback. Dynamic Systems and Applications. 20, 325-356. Disponible en: https://www.researchgate.net/publication/265179274_A_stability_result_for_a_Timoshenko_system_with_past_history_and_a_delay_term_in_the_internal_feedback.

Tarazona, V. (2018). Estudio de la estabilidad de un sistema de Timoshenko con historia pasada (o con memoria) [Tesis de Maestría]. Universidad Nacional Mayor de San Marcos. Disponible en: https://hdl.handle.net/20.500.12672/8435.